72 research outputs found

    \ud Tanzania Health Insurance Regulatory Framework Review\ud

    Get PDF
    Make sure that current policy objectives – achieving universal coverage, social health protection, good governance and cost-containment – are reflected in the relevant legislative documents, and provide the requisite legal tools, reflecting the chosen policy options and the institutional consequences of those options. Consider reducing the fragmentation of the health financing legislation which reflects the current fragmentation in health financing and in governance and oversight of the health financing and insurance systems. Develop an explicit policy on competition in health financing to close the current gaps in legislation and to prevent the possibly negative side effects for Tanzania citizens of such competition in the event that the Government of Tanzania (GOT) opts for a competition-based model of health financing. The model ultimately chosen will have consequences not only for health financing practise, but also for the relevant legislation. Consider the establishment of an independent accreditation body for external assessment and gradual improvement of the quality of care of all health services providers, regardless of their sources of financing. Plug the identified gaps in single enactments which can be done without embarking on any big policy changes. The latter can be included in the development of a planned National Health Financing Strategy. During this development process, it will be possible to focus on specific areas of interest and make detailed recommendations. After national adoption of the strategy, new legislation will have to be drawn up.\ud \u

    Noninnocent Dithiolene Ligands: A New Oxomolybdenum Complex Possessing a Donor-Acceptor Dithiolene Ligand

    Get PDF
    A new monoanionic dithiolene ligand is found in Tp*MoO(S(2)BMOQO). A combination of x-ray crystallography, electronic absorption and resonance Raman spectroscopies, and bonding calculations reveal that the monoanionic dithiolene ligand possesses considerable thiolate-thione character resulting from admixture of an intraligand charge transfer excited state into the ground state wavefunction. The unusual dithiolene exhibits a highly versatile donor-acceptor character that dramatically lowers the Mo(IV/V) redox couple and points to a potentially non-innocent role of the pterin fragment in pyranopterin Mo enzymes. [Image: see text

    Optimizing soil fertility management strategies to enhance banana production in volcanic soils of the northern highlands, Tanzania

    Get PDF
    Open Access Journal; Published online: 18 Feb 2020Banana is an important crop in high altitude areas of Tanzania, grown widely both as a food staple and as the main source of income. However, its production is constrained by low soil fertility, a result of gradual nutrient mining by the crop. Currently, soil fertility management in banana-based farming systems in the country relies mainly on applications of animal manure. However, the amount of manure produced in most farms is not enough to replenish soil fertility due to the small number of animals kept by smallholder resource-poor farmers who are the major producers in the country. Field experiments were conducted at three sites with varying soil types and contrasting weather conditions along the altitudinal gradients on the slopes of the volcanic mountains of Kilimanjaro and Meru, northern Tanzania to (1) investigate the effect of mineral nitrogen (mineral N) fertilizer applications on the growth and yield of Mchare banana (Musa spp., AA, a traditional East African highland cooking banana sub-group), at the four levels of 0, 77, 153, and 230 kg N ha−1 year−1 as a starter strategy to improve the current soil fertility management strategies, and (2) evaluate the effect of the combined use of inorganic and organic N sources on growth and banana fruit production as an alternative strategy to manage soil fertility and minimize animal manure requirements. The treatment factors were trial sites (Tarakea, Lyamungo, and Tengeru) as the main factor and N fertilization strategies (as urea alone, sole cattle manure, and in combination with urea, sole common bean (Phaseolus vulgaris L.) haulms as well as in combination with urea) as a sub factor. Bean haulms and cattle manure were applied each year for two years. Fertilization at 153 kg N ha−1 year−1 derived solely from urea significantly (p < 0.001) resulted in high yield increment of up to 42% relative to the control. However, the increase was highest (52%) with the same N dose derived from cattle manure in combination with urea at 50% substitution. Sole bean haulms resulted in a smaller yield increment, the same as the lowest N dose from the sole urea fertilization treatment. The study concludes that soil fertility management in smallholder banana-based farming systems should not solely rely on animal manure and mineral fertilizers

    Soils, Science and Community ActioN (SoilSCAN): a citizen science tool to empower community-led land management change in East Africa

    Get PDF
    Pastoralist communities worldwide face complex challenges regarding food and feed productivity. Primary production systems are under stress, nutritional choices are changing and the relationship between development and agriculture is undergoing profound transformation. Under increasing pressure from climate and land use change, East African agro-pastoral systems are approaching a tipping point in terms of land degradation. There is an urgent need for evidence-led sustainable land management interventions to reverse degradation of natural resources that support food and water security. A key barrier, however, is a lack of high spatial resolution soil health data wherein collecting such information for each individual community is beyond their means. In this context, we tested whether bridging such data gaps could be achieved through a coordinated programme at the boundary between participation and citizen science. Key outputs included a community-led trial of a hand-held soil scanner, which highlighted a range of positive benefits and practical challenges in using this technology in this context, with identification of some potential solutions; and a targeted soil organic matter and nutrient status dataset in a small catchment-based community setting. The results show that if the practical challenges can be resolved, use of portable soil scanner technology has the potential to fill key knowledge gaps and thereby improve resilience to the threat of land degradation through locally responsive farmer and community decision-making

    Reconstructing the Changes in Sedimentation and Source Provenance in East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania

    Get PDF
    This study aimed to reconstruct the sedimentation rates over time and identify the changing sources of sediment in a major hydropower reservoir in Tanzania, the Nyumba ya Mungu (NYM). Fallout 210Pb measurements were used to estimate age of sediment deposits and broad changes in sedimentation rates were reconstructed. Sedimentation peaks were cross referenced to geochemical profiles of allogenic and autogenic elemental constituents of the sediment column to confirm a causal link. Finally, geochemical fingerprinting of the sediment cores and potential sources were compared using a Bayesian mixing model (MixSIAR) to attribute the dominant riverine and land use sources to the reservoir together with changes through recent decades. Reservoir sedimentation generally increased from 0.1 g cm−2 yr−1 in the lower sediment column to 1.7 g cm−2 yr−1 in the most recent deposits. These results correlated to changes in allogenic and autogenic tracers. The model output pointed to one of two major tributaries, the Kikuletwa River with 60.3%, as the dominant source of sediment to the entire reservoir, while the other tributary, Ruvu River, contributed approximately 39.7%. However, downcore unmixing results indicated that the latest increases in sedimentation seem to be mainly driven by an increased contribution from the Ruvu River. Cultivated land (CU) was shown to be the main land use source of riverine sediment, accounting for 38.4% and 44.6% in Kikuletwa and Ruvu rivers respectively. This study explicitly demonstrated that the integration of sediment tracing and dating tools can be used for quantifying the dominant source of sediment infilling in East African hydropower reservoirs. The results underscore the necessity for catchment-wide management plans that target the reduction of both hillslope erosion reduction and the sediment connectivity from hillslope source areas to rivers and reservoirs, which will help to maintain and enhance food, water and energy security in Eastern Africa.</jats:p

    “We will change whether we want it or not”: Soil erosion in Maasai land as a social dilemma and a challenge to community resilience

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordSoil erosion is a major environmental challenge that undermines economic development in many regions of the world. While much previous work explored physical processes behind this problem, less attention has been paid to social, cultural, and psychological parameters that make a significant impact on soil erosion through the land use practices that they support. The present paper addresses this gap by conducting a qualitative exploration of agro-pastoralist stakeholders’ experiences of soil erosion in northern Tanzania, using the community resilience framework and the social dilemmas approach as theoretical lenses. Interview data suggests that the factors that make communities vulnerable to soil erosion challenges include the centrality of cattle keeping practice to pastoralists’ cultural identity, lack of social cohesion, lack of alternative livelihood opportunities, and weak governance structures. We argue that the ways towards resolving the dilemma lie in addressing relevant cultural norms, building cohesive and open communities, and strengthening local governance.Natural Environment Research Council (NERC)British Academ

    Soil erosion and sediment transport in Tanzania: Part I – sediment source tracing in three neighbouring river catchments

    Get PDF
    Water bodies in Tanzania are experiencing increased siltation, which is threatening water quality, ecosystem health, and livelihood security in the region. This phenomenon is caused by increasing rates of upstream soil erosion and downstream sediment transport. However, a lack of knowledge on the contributions from different catchment zones, land-use types, and dominant erosion processes, to the transported sediment is undermining the mitigation of soil degradation at the source of the problem. In this context, complementary sediment source tracing techniques were applied in three Tanzanian river systems to further the understanding of the complex dynamics of soil erosion and sediment transport in the region. Analysis of the geochemical and biochemical fingerprints revealed a highly complex and variable soil system that could be grouped in distinct classes. These soil classes were unmixed against riverine sediment fingerprints using the Bayesian MixSIAR model, yielding proportionate source contributions for each catchment. This sediment source tracing indicated that hillslope erosion on the open rangelands and maize croplands in the mid-zone contributed over 75% of the transported sediment load in all three river systems during the sampling time-period. By integrating geochemical and biochemical fingerprints in sediment source tracing techniques, this study demonstrated links between land use, soil erosion and downstream sediment transport in Tanzania. This evidence can guide land managers in designing targeted interventions that safeguard both soil health and water quality

    Lymphocyte proliferation to mycobacterial antigens is detectable across a spectrum of HIV-associated tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying novel TB diagnostics is a major public health priority. We explored the diagnostic characteristics of antimycobacterial lymphocyte proliferation assays (LPA) in HIV-infected subjects with latent or active TB.</p> <p>Methods</p> <p>HIV-infected subjects with bacille Calmette Guérin (BCG) scars and CD4 counts ≥ 200 cells/mm<sup>3 </sup>entering a TB booster vaccine trial in Tanzania had baseline in vivo and in vitro immune tests performed: tuberculin skin tests (TST), LPA and five day assays of interferon gamma (IFN-γ) release. Assay antigens were early secreted antigenic target 6 (ESAT-6), antigen 85 (Ag85), and <it>Mycobacterium tuberculosis </it>whole cell lysate (WCL). Subjects were screened for active TB at enrollment by history, exam, sputum smear and culture. We compared antimycobacterial immune responses between subjects with and without latent or active TB at enrollment.</p> <p>Results</p> <p>Among 1885 subjects screened, 635 had latent TB and 13 had active TB. Subjects with latent TB were more likely than subjects without TB to have LPA responses to ESAT-6 (13.2% vs. 5.5%, P < 0.0001), Ag85 (18.7% vs. 3.1%, P < 0.0001), and WCL (45.7% vs. 17.1%, P < 0.0001). Subjects with active TB also were more likely than those without active TB to have detectable LPA responses to ESAT-6 (38.5% vs. 8.1%, P = 0.0001), Ag85 (46.2% vs. 8.5%, P < 0.0001), and WCL (61.5% vs. 27.0%, P = 0.0053). In subjects with a positive TST, LPA responses to ESAT-6, Ag85 and WCL were more common during active TB (p < 0.0001 for all tests). In diagnosing active TB, in vivo and in vitro tests of mycobacterial immune responses had sensitivity and specificity as follows: TST 84.6% and 65.5%, ESAT-6 LPA 38.5% and 92.0%, Ag85 LPA 46.2% and 91.5%, and WCL LPA 61.5% and 73.0%. Detectable LPA responses were more common in patients with higher CD4 counts, and higher HIV viral loads.</p> <p>Conclusion</p> <p>Lymphoproliferative responses to mycobacteria are detectable during HIV-associated active TB, and are less sensitive but more specific than TST.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier NCT00052195.</p

    Building Climate Change Adaptation and Resilience through Soil Organic Carbon Restoration in Sub-Saharan Rural Communities: Challenges and Opportunities

    Get PDF
    Soil organic carbon (SOC) is widely recognised as pivotal in soil function, exerting important controls on soil structure, moisture retention, nutrient cycling and biodiversity, which in turn underpins a range of provisioning, supporting and regulatory ecosystem services. SOC stocks in sub-Saharan Africa (SSA) are threatened by changes in land practice and climatic factors, which destabilises the soil system and resilience to continued climate change. Here, we provide a review of the role of SOC in overall soil health and the challenges and opportunities associated with maintaining and building SOC stocks in SSA. As an exemplar national case, we focus on Tanzania where we provide context under research for the “Jali Ardhi” (Care for the Land) Project. The review details (i) the role of SOC in soil systems; (ii) sustainable land management (SLM) techniques for maintaining and building SOC; (iii) barriers (environmental, economic and social) to SLM implementation; and (iv) opportunities for overcoming barriers to SLM adoption. We provide evidence for the importance of site-specific characterisation of the biophysicochemical and socio-economic context for effective climate adaptation. In particular, we highlight the importance of SOC pools for soil function and the need for practitioners to consider the type of biomass returns to the soil to achieve healthy, balanced systems. In line with the need for local-scale site characterisation we discuss the use of established survey protocols alongside opportunities to complement these with recent technologies, such as rapid in situ scanning tools and aerial surveys. We discuss how these tools can be used to improve soil health assessments and develop critical understanding of landscape connectivity and the management of shared resources under co-design strategies.</jats:p

    Soil erosion and sediment transport in Tanzania: Part II – sedimentological evidence of phased land degradation

    Get PDF
    Soil resources in parts of Tanzania are rapidly being depleted by increased rates of soil erosion and downstream sediment transport, threatening ecosystem health, water and livelihood security in the region. However, incomplete understanding to what effect the dynamics of soil erosion and sediment transport are responding to land-use changes and climatic variability are hindering the actions needed to future-proof Tanzanian land-use practices. Complementary environmental diagnostic tools were applied to reconstruct the rates and sources of sedimentation over time in three Tanzanian river systems that have experienced changing land use and climatic conditions. Detailed historical analysis of sediment deposits revealed drastic changes in sediment yield and source contributions. Quantitative sedimentation reconstruction using radionuclide dating showed a 20-fold increase in sediment yield over the past 120 years. The observed dramatic increase in sediment yield is most likely driven by increasing land-use pressures. Deforestation, cropland expansion and increasing grazing pressures resulted into accelerating rates of sheet erosion. A regime shift after years of progressive soil degradation and convergence of surface flows resulted into a highly incised landscape, where high amounts of eroded soil from throughout the catchment are rapidly transported downstream by strongly connected ephemeral drainage networks. By integrating complementary spatial and temporal evidence bases, this study demonstrated links between land-use change, increased soil erosion and downstream sedimentation. Such evidence can guide stakeholders and policy makers in the design of targeted management interventions to safeguard future soil health and water quality
    corecore